Insulin elicits a ROS-activated and an IP₃-dependent Ca²⁺ release, which both impinge on GLUT4 translocation.

نویسندگان

  • Ariel Contreras-Ferrat
  • Paola Llanos
  • César Vásquez
  • Alejandra Espinosa
  • César Osorio-Fuentealba
  • Manuel Arias-Calderon
  • Sergio Lavandero
  • Amira Klip
  • Cecilia Hidalgo
  • Enrique Jaimovich
چکیده

Insulin signaling includes generation of low levels of H2O2; however, its origin and contribution to insulin-stimulated glucose transport are unknown. We tested the impact of H2O2 on insulin-dependent glucose transport and GLUT4 translocation in skeletal muscle cells. H2O2 increased the translocation of GLUT4 with an exofacial Myc-epitope tag between the first and second transmembrane domains (GLUT4myc), an effect additive to that of insulin. The anti-oxidants N-acetyl L-cysteine and Trolox, the p47(phox)-NOX2 NADPH oxidase inhibitory peptide gp91-ds-tat or p47(phox) knockdown each reduced insulin-dependent GLUT4myc translocation. Importantly, gp91-ds-tat suppressed insulin-dependent H2O2 production. A ryanodine receptor (RyR) channel agonist stimulated GLUT4myc translocation and insulin stimulated RyR1-mediated Ca(2+) release by promoting RyR1 S-glutathionylation. This pathway acts in parallel to insulin-mediated stimulation of inositol-1,4,5-trisphosphate (IP3)-activated Ca(2+) channels, in response to activation of phosphatidylinositol 3-kinase and its downstream target phospholipase C, resulting in Ca(2+) transfer to the mitochondria. An inhibitor of IP3 receptors, Xestospongin B, reduced both insulin-dependent IP3 production and GLUT4myc translocation. We propose that, in addition to the canonical α,β phosphatidylinositol 3-kinase to Akt pathway, insulin engages both RyR-mediated Ca(2+) release and IP3-receptor-mediated mitochondrial Ca(2+) uptake, and that these signals jointly stimulate glucose uptake.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach

Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...

متن کامل

Cdc42 is a Rho GTPase family member that can mediate insulin signaling to glucose transport in 3T3-L1 adipocytes.

We investigated the role of cdc42, a Rho GTPase family member, in insulin-induced glucose transport in 3T3-L1 adipocytes. Microinjection of anti-cdc42 antibody or cdc42 siRNA led to decreased insulin-induced and constitutively active G(q) (CA-G(q); Q209L)-induced GLUT4 translocation. Adenovirus-mediated expression of constitutively active cdc42 (CA-cdc42; V12) stimulated 2-deoxyglucose uptake t...

متن کامل

Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+-dependent mechanism.

Kv1.3 is a voltage-gated K(+) channel expressed in insulin-sensitive tissues. We previously showed that gene inactivation or pharmacological inhibition of Kv1.3 channel activity increased peripheral insulin sensitivity independently of body weight by augmenting the amount of GLUT4 at the plasma membrane. In the present study, we further examined the effect Kv1.3 on GLUT4 trafficking and tested ...

متن کامل

Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca -dependent mechanism

Li, Yanyan, Peili Wang, Jianchao Xu, and Gary V. Desir. Voltagegated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca -dependent mechanism. Am J Physiol Cell Physiol 290: C345–C351, 2006; doi:10.1152/ajpcell.00091.2005.— Kv1.3 is a voltage-gated K channel expressed in insulin-sensitive tissues. We previously showed that gene inactivation or pharmacological inh...

متن کامل

Mitochondria control functional CaV1.2 expression in smooth muscle cells of cerebral arteries.

RATIONALE Physiological functions of mitochondria in contractile arterial myocytes are poorly understood. Mitochondria can uptake calcium (Ca(2+)), but intracellular Ca(2+) signals that regulate mitochondrial Ca(2+) concentration ([Ca(2+)](mito)) and physiological functions of changes in [Ca(2+)](mito) in arterial myocytes are unclear. OBJECTIVE To identify Ca(2+) signals that regulate [Ca(2+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 127 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2014